HYMO: Process Description

I Water Balance on the Hydrotope/Municipio - Scale

1. Evapotranspiration:

Penman approach for potential ET:

$$PET = \frac{\delta \cdot R_n + c_p \cdot \rho_a \cdot (e_s - e_{act})/r_a}{(\delta + \gamma) \cdot L_V}$$
(1)

where:

PET = potential evapotranspiration R_n = Net Radiation = f(cloudyness, surface albedo, ...) $e_s - e_{act}$ = air moisture saturation deficit = f(air temperature, air humidity) r_a = aerodynamic resistance = f(wind velocity)

non-linear reduction of PET (from the HAPEX-SAHEL study):

$$AET = 0.75 \cdot PET \cdot (1 - \beta_{hum}) \cdot (2.7 - 1.7 \cdot \beta_{hum})$$
(2)

$$\beta_{hum} = \frac{\theta_{FC} - \theta_{act}}{\theta_{FC} - \theta_r} \tag{3}$$

where:

AET = actual evapotranspiration β_{hum} = reduction coefficient θ_{act} = actual soil moisture θ_{FC} = soil moisture at field capacity θ_r = residual soil moisture

2. Soil Water Balance:

Bucket approach with threshold values $\theta_s, \theta_{FC}, \theta_r$:

$$\theta_r \le \theta_{act} \le \theta_s \tag{4}$$

$$\theta_{act}(t + \Delta t) = \theta_{act}(t) + N/\Delta t \tag{5}$$

$$q_o = \begin{cases} 0 & \text{for} \quad \theta_{act}(t) + N/\Delta t \le \theta_s \\ (\theta_{act}(t) + N/\Delta t) - \theta_s & \text{for} \quad \theta_{act}(t) + N/\Delta t > \theta_s \end{cases}$$
(6)

$$q_{gw} = \begin{cases} 0 & \text{for} \quad \theta_{act}(t) + N/\Delta t \le \theta_{FC} \\ (\theta_{act}(t) + N/\Delta t) - \theta_{FC} & \text{for} \quad \theta_{act}(t) + N/\Delta t > \theta_{FC} \end{cases}$$
(7)

$$q_l = f_{subfrac} \cdot q_{gw} \tag{8}$$

$$q_{deep} = (1 - f_{subfrac}) \cdot q_{gw} \tag{9}$$

where:

N	=	precipitation
q_o	=	surface runoff
q_{gw}	=	percolation out of the topsoil $(0 < q_{gw} < k_{sat})$
k_{sat}	=	saturated conductivity
q_l	=	lateral subsurface flow
q_{deep}	=	deep groundwater recharge
	=	empirical factor

3. Water budget of distributed ponds (small acudes):

Water balance accounting for inflow, outflow, water use, and evaporation:

$$S_{acude}(t + \Delta t) = S_{acude}(t) + q_{acude}^{in} - q_{acude}^{out} - watus e_{acude} - EV_{acude}$$
(10)

where:

S_{acude}	=	water volume in the pond
q_{acude}^{in}	=	surface flow into the pond $(q_{acude}^{in} = f_{intercep} \cdot q_o)$
$f_{intercep}$	=	empirical factor for water collection in the acudes
q_{acude}^{out}	=	outflow from the pond $(0 < q_{acude}^{in} < q_o)$
$watus e_{acude}$	=	water used from the acude (e.g. irrigation)
EV_{acude}	=	open water evaporation from the acude $(= f(water surafce))$

- 4. Runoff into the major rivers (only one river stretch per municipio), composed of:
 - intercepted surface flow generated in the lowlands
 - outflow from lowland acudes
 - lateral subsurface flow in the lowlands

$$q_{river} = (1 - (f_{intercep})_l) \cdot (q_o)_l + (q_{acude}^{out})_l + (q_l)_l \tag{11}$$

where:

q_{river}	=	runoff into the municipio's main river
$(q_o)_l$		surface runoff in the lowlands
$(f_{intercep})_l$	=	empirical factor for water collection in the acudes (lowlands)
$(q_{acude}^{out})_l$	=	outflow from the ponds (lowlands)
$(q_l)_l$		lateral subsurface flow (lowlands)

1. The river network prescribes the water transfer system between all municipios

 \implies The municipios are connected by a dentritic river network

2. Routing process through a municipio is approached with a linear response function:

$$Q_{j}^{out} = \sum_{i=1}^{j} Q_{i}^{in} \cdot h_{j-i+1}$$
(12)

where:

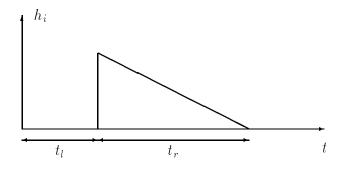


Figure 1: Scheme of the linear response function

where:

 $t_l = lag time [d]$ $t_r = retention time [d]$

Assumption:

 $\mathbf{1d} \leq t_l + t_r \leq \mathbf{7d}$

$$t_l = \frac{\Delta s}{\overline{v}} \tag{13}$$

$$t_r = \frac{\Delta s}{v_m i n} - \frac{\Delta s}{v_m a x} \tag{14}$$

where:

 $\Delta s = channel length$ $t_l = lag time [d]$ $t_r = retention time [d]$

3. Flow velocity in the river

 \implies The flow velocity in the river by Manning equation:

$$v = k_{St} \cdot \sqrt{S_0} \cdot \left(\frac{h \cdot B}{2h + B}\right)^{\frac{2}{3}} \tag{15}$$

where:

 k_{St} = roughness coefficient (Strickler coefficient $[m^{1/3}/s]$ S_0 = channel slope [-] B = channel width [m] h = flow depth [m]

 \implies Flow velocity: $f(k_{St}, S_0, h, \text{ river cross section})$

Assumption:

$$v_{max} = v(h = h_{max})$$

$$\overline{v} = v(h = \frac{2}{3}h_{max})$$

$$v_{min} = v(h = \frac{1}{10}h_{max})$$

4. Estimation about the cross section of the river

 \implies approached given in the CREAMS-SWAT/GRASS-interface WILLIAMS, 19??)

$$H = 0.13 \cdot \left(A_{acc}^E\right)^{0.4} \tag{16}$$

$$B = 1.29 \cdot \left(A_{acc}^E\right)^{0.6} \tag{17}$$

where:

$$H$$
=channel depth [m] $0.25m < H < 20m$ B =channel width [m] $0.5m < B < 500m$ A^{E}_{acc} =accumulated catchment area [km²]

III Water Storage in Large Reservoirs

1. Water balance equation for the reservoir

$$S(t + \Delta t) = S(t) + Q_{in} \cdot \Delta t - Q_{out} \cdot \Delta t + N \cdot \Delta t \cdot A^R - EV \cdot \Delta t \cdot A^R - PERC \cdot \Delta t \quad (18)$$

where:

S	=	actual water volume stored in the reservoir $(0 \le S \le V_{max})$
V_{max}	=	maximum water volume stored in the reservoir
Q_{in}	=	river flow into the reservoir
Q_{out}	=	outflow from the reservoir
N	=	precipitation
EV	=	lake evaporation (=potential evapotranspiration)
PERC	=	percolation
A^R	=	water surface of the reservoir

2. Outflow from the reservoir is composed of controlled outflow and excess outflow:

$$Q_{out} = Q_{contr} + Q_{spill} \tag{19}$$

where:

 Q_{contr} = controlled, mamaged outflow from the reservoir (<u>water use</u>) Q_{spill} = excess, unmamaged outflow (<u>over the spillway</u>)

first approach: $A^R = S/50 \text{ m (S in m}^2)$ $N \cdot \Delta t \cdot A^R$: neglected $PERC \cdot \Delta t$: neglected

HYMO: Model Variables

I Water Balance on the Hydrotope/Municipio - Scale

- 1. Evapotranspiration:
 - Net Radiation R_N
 - (cloudyness, surface albedo, ...)
 - air moisture saturation deficit $(e_s e_a)$
 - air temperature, air humidity
 - wind velocity
 - θ_{act} (actual soil moisture)
 - θ_{FC} (soil moisture at field capacity)
 - θ_r (residual soil moisture)

2. Soil Water Balance:

- N (precipitation)
- q_o (surface runoff)
- q_{gw} (percolation out of the topsoil)
- q_l (lateral subsurface flow)
- q_{deep} (deep groundwater recharge)
- 3. Water budget of distributed ponds (small acudes):
 - q_{acude}^{in} (surface flow into the pond)
 - q_{acude}^{out} (outflow from the pond)
 - watuse_{acude} (water used from the acude (e.g. irrigation))
 - EV_{acude} (open water evaporation from the acude)
- 4. Runoff into the major rivers (only one river stretch per municipio), composed of:
 - q_{river} (runoff into the municipio's main river)
 - $(q_o)_l$ (surface runoff in the lowlands)
 - $(f_{intercep})_l$ (empirical factor for water collection in the acudes (lowlands))
 - $(q_{acude}^{out})_l$ (outflow from the ponds (lowlands))
 - $(q_l)_l$ (lateral subsurface flow (lowlands))

- 1. The river network prescribes the water transfer system between all municipios. Routing process through a municipio is approached with a linear response function:
 - Q_i^{in} (flow out of the municipio)
 - Q_i^{out} (flow into the municipio)

III Water Storage in Large Reservoirs

- 1. Water balance equation for the reservoir
 - S (actual water volume stored in the reservoir)
 - Q_{in} (river flow into the reservoir)
 - Q_{out} (outflow from the reservoir)
 - N (precipitation)
 - EV (lake evaporation (=potential evapotranspiration))
 - PERC (percolation)
 - A^R (water surface of the reservoir)
 - Q_{contr} (controlled, mamaged outflow from the reservoir (<u>water use</u>))
 - Q_{spill} (excess, unmamaged outflow (over the spillway))

HYMO: Model Parameters

I Water Balance on the Hydrotope/Municipio - Scale

1. Evapotranspiration:

- β_{hum} (reduction coefficient)
- θ_{FC} (soil moisture at field capacity)
- θ_r (residual soil moisture)
- 2. Soil Water Balance:
 - k_{sat} (saturated conductivity)
 - $f_{subfrac}$ (empirical factor)
- 3. Water budget of distributed ponds (small acudes):
 - S_{acude} (water volume in the pond)
 - $f_{intercep}$ (empirical factor for water collection in the acudes)
- 4. Runoff into the major rivers (only one river stretch per municipio), composed of:
 - $(f_{intercep})_l$ (empirical factor for water collection in the acudes (lowlands))

- 1. The river network prescribes the water transfer system between all municipios Routing process through a municipio is approached with a linear response function:
 - k_{St} (roughness coefficient (Strickler coefficient $[m^{1/3}/s]$)
 - S₀ (channel slope [-])
 - B (channel width [m])
 - *H* (channel depth [m])
 - A_{acc}^{E} (accumulated catchment area [km²])

III Water Storage in Large Reservoirs

- 1. Water balance equation for the reservoir
 - V_{max} (maximum water volume stored in the reservoir)
 - A^R (water surface of the reservoir)